

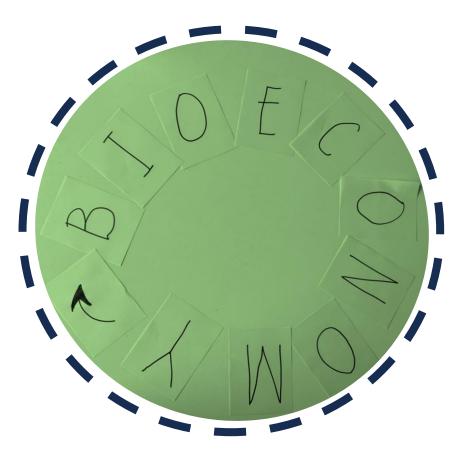
MINDING THE SYSTEM'S BOUNDARIES

SCALE-UP SUSTAINABILITY SCREENING

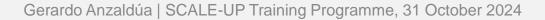
Gerardo Anzaldúa, Ecologic Institute

Workstream 7 of the SCALE-UP Training Programme 31 October 2024

Gerardo Anzaldúa | SCALE-UP Training Programme, 31 October 2024



The bioeconomy carries great **potential** for achieving various policy goals related to sustainability.


However, environmental sustainability is not an intrinsic characteristic of the bioeconomy, but a potential it could achieve (Zeug et al. 2020).

SCALE^{UP} community-driven bioeconomy development

For a region **to use** its bioeconomy potential sustainably, it should carefully consider the **limits** within which it can operate to avoid ecosystem collapse and to ensure that resources will remain available for future generations.

Hence, the burden of the regional bioeconomy - in terms of used, consumed or degraded resources and emitted pollutants - should not be as high as to destabilize the ecological systems upon which regions depend.

LET'S NOW TALK ABOUT: WHAT THE CHALLENGE WAS, HOW WE APPROACHED IT AND WHY, AND WHAT WE LEARNED.

Gerardo Anzaldúa | SCALE-UP Training Programme, 31 October 2024

THE CHALLENGE

- Regions are the most appropriate territorial level to implement bioeconomy strategies.
- There is a need for improving our capacity to assess the environmental impacts of bioeconomy development.
 - Yet, sustainability assessments were mainly being carried out for the global scale, and
 - such work could be out of reach for regions lacking capacities and who depend largely on project-based impulses.

THE APPROACH: INTUITIVE GUIDANCE

- 1. Collecting open, accessible, and regularly updated regional data (i.e. NUTS3 or similar) on water, land, and biodiversity
- 2. Combining the data into a structured framework to draw broad indications of what the associated limits of a given region might be
- 3. Gathering previous knowledge on (+/-) impacts of selected economic activities and management practices on water, soil and biodiversity
- 4. Overlaying information on potential impacts over the "baseline" condition

Keeping the computational complexity and associated effort low, documenting sources of uncertainty, and working iteratively to incorporate feedback from local experts

THE APPROACH: THRESHOLDS & RANKINGS

Table 37 Proposed thresholds for the water section of the sustainability screening

Water body type	Status category	2018 EU-level assessment results (proportion of water bodies achieving good status)	Proposed thresholds for the sustainability screening		
			High concern	Moderate concern	Low concern
Surface water bodies	Ecological status	~40%	0-40%	41-89%	90-100%
	Chemical Status	38%	0-38%	39-89%	90-100%
Groundwater bodies	Chemical status	74%	0-74%	75-89%	90-100%
	Quantitative status	89%	0-89%	-	90-100%

Source: Anzaldúa et al., 2022.

Table 38 Ordinal ranking convention for the water section of the sustainability screening

Ordinal ranking fo	Chemical status			
resources	High concern	Moderate concern	Low concern	
Ecological or Quantitative status	High concern			
	Moderate concern			
	Low concern			

Source: Anzaldúa et al., 2022.

THE APPROACH: RESULTS

Resources screened		Ordinal Baseline Rating	Cultivation Management Practices		
Category	Sub-Category	Rung	Potentially beneficial to the baseline status	Potentially detrimental to the baseline status	
Water	Surface water bodies		- Carefully managed irrigation	- Excessive fertilizer use (cereal straw), especially phosphate fertilizers.	
Groundwater bodies			- Adequate management practices for hemp, miscanthus and flax cultivation can improve the status of water resources		
Land Resources	-		 Conservation tillage and mulching (with care taken to not increase pesticide use). Contouring 	- Excessive fertilizer use (cereal straw), especially phosphate fertilizers.	
			 Avoiding planting crops on high slopes Adequate management practices for hemp, miscanthus and flax cultivation can improve the status of soil resources 		
Biodiversity	Endangered Species	18	- Hemp, flax and miscanthus plants, because of their height, density, low input requirements and harvesting outside bird nesting periods,	- Excessive water abstraction can be damaging for habitats of certain threatened populations.	
	Critically Endangered Species	1	are refuges for biodiversity	- Poor fertilizer management can also damage aquatic and terrestrial habitats.	

SOME LESSONS

The pilots in BE-Rural and case studies in SCALE-UP were very useful to spot the approach's limitations and its potential when combined with local knowledge.

The screening provides a high-level, yet useful basis for engaging regional actors into a more focussed discussion of environmental sustainability and ecological limits		The more multi-disciplinary and engaged the screening team is, the more valuable and impactful the results should generally be
Readily available and regularly updated data and/or indicators at NUTS3 level were difficult to access (e.g. for water resources)	>	Alternatives were identified, but required more elaborate efforts and sometimes consultation with regional authorities
There is low data capacity on the potential burden of specific bioeconomic activities and management practices	>	A literature review approach was a workable solution, but local knowledge is essential to generate more nuanced recommendations
Cases, priorities and conditions vary widely among regions. This can have important implications on how the screening unfolds		From data capacity issues to interests and dynamics within the screening team, many factors can be influential and limit comparability

THANK YOU FOR YOUR ATTENTION

Gerardo Anzaldúa

gerardo.anzaldua@ecologic.eu www.ecologic.eu

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101060264.